Actual source code: test1.c
slepc-3.17.1 2022-04-11
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
11: static char help[] = "Test the solution of a PEP without calling PEPSetFromOptions (based on ex16.c).\n\n"
12: "The command line options are:\n"
13: " -n <n>, where <n> = number of grid subdivisions in x dimension.\n"
14: " -m <m>, where <m> = number of grid subdivisions in y dimension.\n"
15: " -type <pep_type> = pep type to test.\n"
16: " -epstype <eps_type> = eps type to test (for linear).\n\n";
18: #include <slepcpep.h>
20: int main(int argc,char **argv)
21: {
22: Mat M,C,K,A[3]; /* problem matrices */
23: PEP pep; /* polynomial eigenproblem solver context */
24: PetscInt N,n=10,m,Istart,Iend,II,nev,i,j;
25: PetscReal keep;
26: PetscBool flag,isgd2,epsgiven,lock;
27: char peptype[30] = "linear",epstype[30] = "";
28: EPS eps;
29: ST st;
30: KSP ksp;
31: PC pc;
33: SlepcInitialize(&argc,&argv,(char*)0,help);
35: PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL);
36: PetscOptionsGetInt(NULL,NULL,"-m",&m,&flag);
37: if (!flag) m=n;
38: N = n*m;
39: PetscOptionsGetString(NULL,NULL,"-type",peptype,sizeof(peptype),NULL);
40: PetscOptionsGetString(NULL,NULL,"-epstype",epstype,sizeof(epstype),&epsgiven);
41: PetscPrintf(PETSC_COMM_WORLD,"\nQuadratic Eigenproblem, N=%" PetscInt_FMT " (%" PetscInt_FMT "x%" PetscInt_FMT " grid)\n\n",N,n,m);
43: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
44: Compute the matrices that define the eigensystem, (k^2*M+k*C+K)x=0
45: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
47: /* K is the 2-D Laplacian */
48: MatCreate(PETSC_COMM_WORLD,&K);
49: MatSetSizes(K,PETSC_DECIDE,PETSC_DECIDE,N,N);
50: MatSetFromOptions(K);
51: MatSetUp(K);
52: MatGetOwnershipRange(K,&Istart,&Iend);
53: for (II=Istart;II<Iend;II++) {
54: i = II/n; j = II-i*n;
55: if (i>0) MatSetValue(K,II,II-n,-1.0,INSERT_VALUES);
56: if (i<m-1) MatSetValue(K,II,II+n,-1.0,INSERT_VALUES);
57: if (j>0) MatSetValue(K,II,II-1,-1.0,INSERT_VALUES);
58: if (j<n-1) MatSetValue(K,II,II+1,-1.0,INSERT_VALUES);
59: MatSetValue(K,II,II,4.0,INSERT_VALUES);
60: }
61: MatAssemblyBegin(K,MAT_FINAL_ASSEMBLY);
62: MatAssemblyEnd(K,MAT_FINAL_ASSEMBLY);
64: /* C is the 1-D Laplacian on horizontal lines */
65: MatCreate(PETSC_COMM_WORLD,&C);
66: MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,N,N);
67: MatSetFromOptions(C);
68: MatSetUp(C);
69: MatGetOwnershipRange(C,&Istart,&Iend);
70: for (II=Istart;II<Iend;II++) {
71: i = II/n; j = II-i*n;
72: if (j>0) MatSetValue(C,II,II-1,-1.0,INSERT_VALUES);
73: if (j<n-1) MatSetValue(C,II,II+1,-1.0,INSERT_VALUES);
74: MatSetValue(C,II,II,2.0,INSERT_VALUES);
75: }
76: MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);
77: MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);
79: /* M is a diagonal matrix */
80: MatCreate(PETSC_COMM_WORLD,&M);
81: MatSetSizes(M,PETSC_DECIDE,PETSC_DECIDE,N,N);
82: MatSetFromOptions(M);
83: MatSetUp(M);
84: MatGetOwnershipRange(M,&Istart,&Iend);
85: for (II=Istart;II<Iend;II++) MatSetValue(M,II,II,(PetscReal)(II+1),INSERT_VALUES);
86: MatAssemblyBegin(M,MAT_FINAL_ASSEMBLY);
87: MatAssemblyEnd(M,MAT_FINAL_ASSEMBLY);
89: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
90: Create the eigensolver and set various options
91: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
93: PEPCreate(PETSC_COMM_WORLD,&pep);
94: A[0] = K; A[1] = C; A[2] = M;
95: PEPSetOperators(pep,3,A);
96: PEPSetProblemType(pep,PEP_GENERAL);
97: PEPSetDimensions(pep,4,20,PETSC_DEFAULT);
98: PEPSetTolerances(pep,PETSC_SMALL,PETSC_DEFAULT);
100: /*
101: Set solver type at runtime
102: */
103: PEPSetType(pep,peptype);
104: if (epsgiven) {
105: PetscObjectTypeCompare((PetscObject)pep,PEPLINEAR,&flag);
106: if (flag) {
107: PEPLinearGetEPS(pep,&eps);
108: PetscStrcmp(epstype,"gd2",&isgd2);
109: if (isgd2) {
110: EPSSetType(eps,EPSGD);
111: EPSGDSetDoubleExpansion(eps,PETSC_TRUE);
112: } else EPSSetType(eps,epstype);
113: EPSGetST(eps,&st);
114: STGetKSP(st,&ksp);
115: KSPGetPC(ksp,&pc);
116: PCSetType(pc,PCJACOBI);
117: PetscObjectTypeCompare((PetscObject)eps,EPSGD,&flag);
118: }
119: PEPLinearSetExplicitMatrix(pep,PETSC_TRUE);
120: }
121: PetscObjectTypeCompare((PetscObject)pep,PEPQARNOLDI,&flag);
122: if (flag) {
123: STCreate(PETSC_COMM_WORLD,&st);
124: STSetTransform(st,PETSC_TRUE);
125: PEPSetST(pep,st);
126: STDestroy(&st);
127: PEPQArnoldiGetRestart(pep,&keep);
128: PEPQArnoldiGetLocking(pep,&lock);
129: if (!lock && keep<0.6) PEPQArnoldiSetRestart(pep,0.6);
130: }
131: PetscObjectTypeCompare((PetscObject)pep,PEPTOAR,&flag);
132: if (flag) {
133: PEPTOARGetRestart(pep,&keep);
134: PEPTOARGetLocking(pep,&lock);
135: if (!lock && keep<0.6) PEPTOARSetRestart(pep,0.6);
136: }
138: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
139: Solve the eigensystem
140: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
142: PEPSolve(pep);
143: PEPGetDimensions(pep,&nev,NULL,NULL);
144: PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %" PetscInt_FMT "\n",nev);
146: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
147: Display solution and clean up
148: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
150: PEPErrorView(pep,PEP_ERROR_BACKWARD,NULL);
151: PEPDestroy(&pep);
152: MatDestroy(&M);
153: MatDestroy(&C);
154: MatDestroy(&K);
155: SlepcFinalize();
156: return 0;
157: }
159: /*TEST
161: testset:
162: args: -m 11
163: output_file: output/test1_1.out
164: filter: sed -e "s/1.16403/1.16404/g" | sed -e "s/1.65362i/1.65363i/g" | sed -e "s/-1.16404-1.65363i, -1.16404+1.65363i/-1.16404+1.65363i, -1.16404-1.65363i/" | sed -e "s/-0.51784-1.31039i, -0.51784+1.31039i/-0.51784+1.31039i, -0.51784-1.31039i/"
165: requires: !single
166: test:
167: suffix: 1
168: args: -type {{toar qarnoldi linear}}
169: test:
170: suffix: 1_linear_gd
171: args: -type linear -epstype gd
172: requires: !__float128
174: TEST*/