Actual source code: test12.c

slepc-3.17.1 2022-04-11
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */

 11: static char help[] = "Illustrates region filtering in PEP (based on spring).\n"
 12:   "The command line options are:\n"
 13:   "  -n <n> ... number of grid subdivisions.\n"
 14:   "  -mu <value> ... mass (default 1).\n"
 15:   "  -tau <value> ... damping constant of the dampers (default 10).\n"
 16:   "  -kappa <value> ... damping constant of the springs (default 5).\n\n";

 18: #include <slepcpep.h>

 20: int main(int argc,char **argv)
 21: {
 22:   Mat            M,C,K,A[3];      /* problem matrices */
 23:   PEP            pep;             /* polynomial eigenproblem solver context */
 24:   RG             rg;
 25:   PetscInt       n=30,Istart,Iend,i;
 26:   PetscReal      mu=1.0,tau=10.0,kappa=5.0;

 28:   SlepcInitialize(&argc,&argv,(char*)0,help);

 30:   PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL);
 31:   PetscOptionsGetReal(NULL,NULL,"-mu",&mu,NULL);
 32:   PetscOptionsGetReal(NULL,NULL,"-tau",&tau,NULL);
 33:   PetscOptionsGetReal(NULL,NULL,"-kappa",&kappa,NULL);
 34:   PetscPrintf(PETSC_COMM_WORLD,"\nDamped mass-spring system, n=%" PetscInt_FMT " mu=%g tau=%g kappa=%g\n\n",n,(double)mu,(double)tau,(double)kappa);

 36:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 37:      Compute the matrices that define the eigensystem, (k^2*M+k*C+K)x=0
 38:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 40:   /* K is a tridiagonal */
 41:   MatCreate(PETSC_COMM_WORLD,&K);
 42:   MatSetSizes(K,PETSC_DECIDE,PETSC_DECIDE,n,n);
 43:   MatSetFromOptions(K);
 44:   MatSetUp(K);

 46:   MatGetOwnershipRange(K,&Istart,&Iend);
 47:   for (i=Istart;i<Iend;i++) {
 48:     if (i>0) MatSetValue(K,i,i-1,-kappa,INSERT_VALUES);
 49:     MatSetValue(K,i,i,kappa*3.0,INSERT_VALUES);
 50:     if (i<n-1) MatSetValue(K,i,i+1,-kappa,INSERT_VALUES);
 51:   }

 53:   MatAssemblyBegin(K,MAT_FINAL_ASSEMBLY);
 54:   MatAssemblyEnd(K,MAT_FINAL_ASSEMBLY);

 56:   /* C is a tridiagonal */
 57:   MatCreate(PETSC_COMM_WORLD,&C);
 58:   MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,n,n);
 59:   MatSetFromOptions(C);
 60:   MatSetUp(C);

 62:   MatGetOwnershipRange(C,&Istart,&Iend);
 63:   for (i=Istart;i<Iend;i++) {
 64:     if (i>0) MatSetValue(C,i,i-1,-tau,INSERT_VALUES);
 65:     MatSetValue(C,i,i,tau*3.0,INSERT_VALUES);
 66:     if (i<n-1) MatSetValue(C,i,i+1,-tau,INSERT_VALUES);
 67:   }

 69:   MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);
 70:   MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);

 72:   /* M is a diagonal matrix */
 73:   MatCreate(PETSC_COMM_WORLD,&M);
 74:   MatSetSizes(M,PETSC_DECIDE,PETSC_DECIDE,n,n);
 75:   MatSetFromOptions(M);
 76:   MatSetUp(M);
 77:   MatGetOwnershipRange(M,&Istart,&Iend);
 78:   for (i=Istart;i<Iend;i++) MatSetValue(M,i,i,mu,INSERT_VALUES);
 79:   MatAssemblyBegin(M,MAT_FINAL_ASSEMBLY);
 80:   MatAssemblyEnd(M,MAT_FINAL_ASSEMBLY);

 82:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 83:                     Create a region for filtering
 84:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 86:   RGCreate(PETSC_COMM_WORLD,&rg);
 87:   RGSetType(rg,RGINTERVAL);
 88: #if defined(PETSC_USE_COMPLEX)
 89:   RGIntervalSetEndpoints(rg,-47.0,-35.0,-0.001,0.001);
 90: #else
 91:   RGIntervalSetEndpoints(rg,-47.0,-35.0,-0.0,0.0);
 92: #endif

 94:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 95:                 Create the eigensolver and solve the problem
 96:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 98:   PEPCreate(PETSC_COMM_WORLD,&pep);
 99:   PEPSetRG(pep,rg);
100:   A[0] = K; A[1] = C; A[2] = M;
101:   PEPSetOperators(pep,3,A);
102:   PEPSetTolerances(pep,PETSC_SMALL,PETSC_DEFAULT);
103:   PEPSetFromOptions(pep);
104:   PEPSolve(pep);

106:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
107:                     Display solution and clean up
108:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

110:   PEPErrorView(pep,PEP_ERROR_BACKWARD,NULL);
111:   PEPDestroy(&pep);
112:   MatDestroy(&M);
113:   MatDestroy(&C);
114:   MatDestroy(&K);
115:   RGDestroy(&rg);
116:   SlepcFinalize();
117:   return 0;
118: }

120: /*TEST

122:    test:
123:       args: -pep_nev 8 -pep_type {{toar linear qarnoldi}}
124:       suffix: 1
125:       requires: !single
126:       output_file: output/test12_1.out

128: TEST*/