
Scotch 7.0 Maintainer’s Guide

(version 7.0.6)

François Pellegrini

Université de Bordeaux & LaBRI, UMR CNRS 5800

TadAAM team, INRIA Bordeaux Sud-Ouest

351 cours de la Libération, 33405 TALENCE, FRANCE

francois.pellegrini@u-bordeaux.fr

November 21, 2024

Abstract

This document describes some internals of the libScotch library.

1

Contents

1 Introduction 2

2 Coding style 3

2.1 Typing . 3

2.1.1 Spacing . 3

2.1.2 Aligning . 3

2.1.3 Idiomatic specificities . 3

2.2 Indenting . 4

2.3 Comments . 4

3 Naming conventions 5

3.1 File inclusion markers . 5

3.2 Variables and fields . 5

3.3 Functions . 7

3.4 Array index basing . 8

4 Structure of the libScotch library 8

5 Files and data structures 9

5.1 Decomposition-defined architecture files 9

6 Adding a method to the libScotch library 10

6.1 What to add . 10

6.2 Where to add . 11

6.3 Declaring the new method to the parser 12

6.4 Adding the new method to the makefile 13

7 Data structure explanations 13

7.1 Graph . 13

7.2 Hgraph . 16

7.3 Kgraph . 17

7.3.1 Mappings . 17

7.4 Mapping . 18

8 Code explanations 20

8.1 dgraphCoarsenBuild() . 20

8.1.1 Creating the fine-to-coarse vertex array 20

8.2 dgraphFold() and dgraphFoldDup() 21

8.2.1 dgraphFoldComm() . 22

1 Introduction

This document is a starting point for the persons interested in using Scotch as

a testbed for their new partitioning methods, and/or willing to contribute to it by

making these methods available to the rest of the scientific community.

Much information is missing. If you need specific information, please send an

e-mail, so that relevant additional information can be added to this document.

2

2 Coding style

The Scotch coding style is now well established. Hence, potential contributors

are requested to abide by it, to provide a global ease of reading while browsing the

code, and to ease the work of their followers.

In this section, the numbering of the characters of each line is assumed to start

from zero.

2.1 Typing

2.1.1 Spacing

Expressions are like sentences, where words are separated by spaces. Hence, an

expression like “if (n == NULL) {” reads: “if n is-equal-to NULL then”, with

words separated by single spaces.

As in standard typesetting, there is no space after an opening parenthesis, nor

before a closing one, because they are not words.

When it follows a keyword, an opening brace is always on the same line as the

keyword (save for special cases, e.g. preprocessing macros between the keyword

and the opening brace). This is meant to maximize the number of “useful readable

lines” on the screen. However, closing braces are on a separate line, aligned with

the indent of the line that contains the matching opening brace. This is meant to

find in a glance the line that contains this opening brace.

Brackets are not considered as words: they are stuck both to the word on their

left and the word on their right.

Reference and dereference operators “&” and “*” are stuck to the word on their

right. However, the multiplication operator “*” counts as a word in arithmetic

expressions.

Semicolons are always stuck to the word on their left, except when they follow

an empty instruction, e.g., an empty loop body or an empty for field. Empty

instructions are materialized by a single space character, which makes the semicolon

separated from the preceding word. For instance: “for (; ;) ;”.

Ternary operator elements “?” and “:” are considered as words and are sur-

rounded by spaces. When the ternary construct spans across multiple lines, they

are placed at the beginning of each line, before the expression they condition, and

not at the end of the previous line.

2.1.2 Aligning

When several consecutive lines contain similar expressions that are strongly con-

nected, e.g. arguments of a memAllocGroup() routine, or assignments of multiple

fields of the same structure(s), extra spaces can be added to align parts of the ex-

pressions. This is a matter of style and opportunity.

For instance, when consecutive lines contain function calls where opening paren-

theses are close to each other and their arguments overlap, open parentheses have

to be aligned. However, when arguments do not overlap, alignment is not required

(e.g., for return statements with small parameters).

2.1.3 Idiomatic specificities

While, in C, return is a keyword which does not need parentheses around its

argument, the Scotch coding style treats it as if it were a function call, thus

requiring parentheses around its argument when it has one.

3

2.2 Indenting

Indenting is subject to the following rules:

• All indents are of two characters. Hence, starting from column zero, all lines

start at even column numbers.

• Tabs are never used in the source code. If your text editor replaces chunks

of spaces by tabs, it is your duty to disable this feature or to make sure to

replace all tabs by spaces before the files are committed. Unwanted tabs are

shown in red when performing a “git diff” prior to committing.

Condition bodies are always indented on the line below the condition statement.

“if” statements are always placed at the beginning of a new line, except when used

as an “else if” construct, in which the two keywords appear on the same line,

separated by a single space.

Loop bodies are always indented on the line below the loop statement, except

when the loop body is an empty instruction. In this case, the terminating semicolon

is placed on the same line as the loop statement, after a single space.

2.3 Comments

All comments are C-style, that is, of the form “/*. . .*/”. C++-style comments

should never be used.

There are three categories of comments: file comments, function/data structure

comments, and line comments. Commenting is subject to the following rules:

• File comments are standard header blocks that must be copied as is. Hence,

there is little to say about them. On top of each file should be placed a license

header, which depends on the origin of the file.

• Block comments start with “/*” and end with “*/” on a separate subsequent

line. Intermediate lines start with “**”. All these comment markers are

placed at colums zero. Comment text is separated from the comment markers

by a single space character. Text in block comments is made of titles or of

full sentences, that are terminated with a punctuation sign (most often a final

dot).

• Line comments are of two types: structure definition line comments in header

files, and code line comments.

Structure definition line comments in header files start with “/*+” and end

with “+*/”. This is an old Doxygen syntax, which has been preserved over

time. Code line comments start classically with “/*” and end with “*/”.

All these comments start at least at character 50. If the C code line is longer,

comment lines start one character after the end of the line, after a single space.

End comment markers are placed at least one character after the end of the

comment text. When several line comments are present on consecutive lines,

comment terminators are aligned to the farthest comment terminator.

Comment text always starts with an uppercase letter, and have no terminating

punctuation sign. They are written in the imperative mode, and a positive

form (no question asked).

Line comments for C pre-processing conditional macros (e.g. “#else” or

“#endif”) are not subject to indentation rules. They start one character

4

after the keyword, and are not subject to end marker alignment, except when

consecutive lines bear the same keyword (i.e., a “#endif” statement).

3 Naming conventions

Data types, variables, structure fields and function names follow strict nam-

ing conventions. These conventions strongly facilitate the understanding of the

meaning of the expressions, and prevent from coding mistakes. For instance,

“verttax[edgenum]” would clearly be an invalid expression, as a vertex array

cannot be indexed by an edge number. Hence, potential contributors are required

to follow them strictly.

3.1 File inclusion markers

File inclusion markers are #define’s which indicate that a given source file (either

a “.c” source code file or a “.h” header file) has been already encountered.

To minimize risks of collisions with symbols of external libraries, file inclusion

markers start with a prefix that represents the name of the project, followed by

the name of the file in question (without its type suffix). While filenames can be

long, this is not an issue since the length of the significant part of C preprocessor

symbols is at least 63 characters1, thus longer than that of C identifiers, which is

32 characters. Header file marker identifiers are suffixed with “ H”, while C source

file markers have no suffix.

In order to further minimize risks of collisions, file inclusion markers should be

placed in a file only when needed, that is, when effectively used as the parameter

of a conditional inclusion statement within another source file.

The current project prefixes are:

• SCOTCH : the Scotch project itself;

• ESMUMPS : the esMUMPS library, which is treated as a separate project to

avoid conflicts with data structures and files that exist in both libraries, such

as Graph’s.

3.2 Variables and fields

Variables and fields of the sequential Scotch software are commonly built from

a radical and a suffix. When contextualization is required, e.g., the same kind

of variable appear in two different objects, a prefix is added. In PT-Scotch,

a second radical is commonly used, to inform on variable locality or duplication

across processes.

Common radicals are:

• vert: vertex.

• velo: vertex load.

• vnoh: non-halo vertex, as used in the Hgraph structure.

• vnum: vertex number, used as an index to access another vertex structure.

This radical typically relates to an array that contains the vertex indices, in

some original graph, corresponding to the vertices of a derived graph (e.g., an

induced graph).

1See e.g. https://gcc.gnu.org/onlinedocs/cpp/Implementation-limits.html

5

https://gcc.gnu.org/onlinedocs/cpp/Implementation-limits.html

• vlbl: user-defined vertex label (at the user API level).

• edge: edge (i.e.., arcs, in fact).

• edlo: edge (arc) load.

• enoh: non-halo edge (i.e.., arcs, in fact).

• arch: target architecture.

• graf: graph.

• mesh: mesh.

Common suffices are:

• bas: start “based” value for a number range; see the “nnd” suffix below. For

number basing and array indexing, see Section 3.4.

• end: vertex end index of an edge (e.g., vertend, wrt. vertnum). The end

suffix is a sub-category of the num suffix.

• nbr: number of instances of objects of a given radical type (e.g., vertnbr,

edgenbr). They are commonly used within “un-based” loop constructs, such

as: “for (vertnum = 0; vertnum < vertnbr; vertnum ++) . . . ”.

• nnd: end based value for a number range, commonly used for loop boundaries.

Usually, ∗nnd = ∗nbr+baseval. For instance, vertnnd = vertnbr+baseval.

They are commonly used in based loop constructs, such as: “for (vertnum

= baseval; vertnum < vertnnd; vertnum ++) . . . ”. For local ver-

tex ranges, e.g., within a thread that manages only a partial vertex range,

the loop construct would be: “for (vertnum = vertbas; vertnum <

vertnnd; vertnum ++) . . . ”.

• num: based or un-based number (index) of some instance of an object of

a given radical type. For instance, vertnum is the index of some (graph)

vertex, that can be used to access adjacency (verttab) or vertex load

(velotab) arrays. 0 ≤ vertnum < vertnbr if the vertex index is un-based,

and baseval ≤ vertnum < vertnnd if the index is based, that it, counted

starting from baseval.

• ptr: pointer to an instance of an item of some radical type (e.g., grafptr).

• sum: sum of several values of the same radical type (e.g., velosum,

edlosum).

• tab: reference to the first memory element of an array. Such a reference is

returned by a memory allocation routine (e.g., memAlloc) or allocated from

the stack.

• tax (for “table access”): reference to an array that will be accessed using

based indices. See Section 3.4.

• tnd: pointer to the based after-end of an array of items of radix type (e.g.

velotnd). Variables of this suffix are mostly used as bounds in loops.

• val: value of an item. For instance, baseval is the indexing base value, and

veloval is the load of some vertex, that may have been read from a file.

6

Common prefixes are:

• src: source, wrt. active. For instance, a source graph is a plain Graph

structure that contains only graph topology, compared to enriched graph data

structures that are used for specific computations such as bipartitioning.

• act: active, wrt. source. An active graph is a data structure enriched with

information required for specific computations, e.g. a Bgraph, a Kgraph or

a Vgraph compared to a Graph.

• ind: induced, wrt. original.

• src: source, wrt. active or target.

• org: original, wrt. induced. An original graph is a graph from which a

derived graph will be computed, e.g. an induced subgraph.

• tgt: target.

• coar: coarse, wrt. fine (e.g. coarvertnum, as a variable that holds the

number of a coarse vertex, within some coarsening algorithm).

• fine: fine, wrt. coarse.

• mult: multinode, for coarsening.

3.3 Functions

Like variables, routines of the Scotch software package follow a strict naming

scheme, in an object-oriented fashion. Routines are always prefixed by the name of

the data structure on which they operate, then by the name of the method that is

applied to the said data structure. Some method names are standard for each class.

Standard method names are:

• Alloc: dynamically allocate an object of the given class. Not always avail-

able, as many objects are allocated on the stack as local variables.

• Init: initialization of the object passed as parameter.

• Free: freeing of the external structures of the object, to save space. The

object may still be used, but it is considered as “empty” (e.g., an empty

graph). The object may be re-used after it is initialized again.

• Exit: freeing of the internal structures of the object. The object must not

be passed to other routines after the Exit method has been called.

• Copy: make a fully operational, independent, copy of the object, like a “clone”

function in object-oriented languages.

• Load: load object data from stream.

• Save: save object data to stream.

• View: display internal structures and statistics, for debugging purposes.

• Check: check internal consistency of the object data, for debugging purposes.

A Check method must be created for any new class, and any function that

creates or updates an instance of some class must call the appropriate Check

method, when compiled in debug mode.

7

3.4 Array index basing

The libScotch library can accept data structures that come both from FORTRAN,

where array indices start at 1, and C, where they start at 0. The start index for

arrays is called the “base value”, commonly stored in a variable (or field) called

baseval.

In order to manage based indices elegantly, most references to arrays are based

as well. The “table access” reference, suffixed as “tax” (see Section 3.2), is defined

as the reference to the beginning of an array in memory, minus the base value (with

respect to pointer arithmetic, that is, in terms of bytes, times the size of the array

cell data type). Consequently, for any array whose beginning is pointed to by ∗tab,

we have ∗tax = ∗tab − baseval. Consequently ∗tax[baseval always represents

the first cell in the array, whatever the base value is. Of course, memory allocation

and freeing operations must always operate on ∗tab pointers only.

In terms of indices, if the size of the array is xxxxnbr, then xxxxnnd =

xxxxnbr + baseval, so that valid indices xxxxnum always belong to the range

[baseval;vertnnd[. Consequently, loops often take the form:

for (xxxxnum = baseval; xxxxnum < xxxxnnd; xxxxnum ++) {

xxxxtax[xxxxnum] = ...;

}

4 Structure of the libScotch library

As seen in Section 3.3, all of the routines that comprise the libScotch project

are named with a prefix that defines the type of data structure onto which they

apply and a prefix that describes their purpose. This naming scheme allows one to

categorize functions as methods of classes, in an object-oriented manner.

This organization is reflected in the naming and contents of the various source

files.

The main modules of the libScotch library are the following:

• arch: target architectures used by the static mapping methods.

• bgraph: graph edge bipartitioning methods, hence the initial.

• graph: basic (source) graph handling methods.

• hgraph: graph ordering methods. These are based on an extended “halo”

graph structure, thus for the initial.

• hmesh: mesh ordering methods.

• kgraph: k-way graph partitioning methods.

• library: API routines for the libScotch library.

• mapping: definition of the mapping structure.

• mesh: basic mesh handling methods.

• order: definition of the ordering structure.

• parser: strategy parsing routines, based on the Flex and Bison parsers.

• vgraph: graph vertex bipartitioning methods, hence the initial.

8

• vmesh: mesh node bipartitioning methods.

Every source file name is made of the name of the module to which it belongs,

followed by one or two words, separated by an underscore, that describe the type

of action performed by the routines of the file. For instance, for module bgraph:

• bgraph.h is the header file that defines the Bgraph data structure,

• bgraph bipart fm.[ch] are the files that contain the Fiduccia-

Mattheyses-like graph bipartitioning method,

• bgraph check.c is the file that contains the consistency checking routine

bgraphCheck for Bgraph structures,

and so on. Every source file has a comments header briefly describing the purpose

of the code it contains.

5 Files and data structures

User-manageable file formats are described in the Scotch user’s guide. This section

contains information that are relevant only to developers and maintainers.

For the sake of portability, readability, and reduction of storage space, all the

data files shared by the different programs of the Scotch project are coded in plain

ASCII text exclusively. Although one may speak of “lines” when describing file for-

mats, text-formatting characters such as newlines or tabulations are not mandatory,

and are not taken into account when files are read. They are only used to provide

better readability and understanding. Whenever numbers are used to label objects,

and unless explicitely stated, numberings always start from zero, not one.

5.1 Decomposition-defined architecture files

Decomposition-defined architecture files are the way to describe irregular target

architectures that cannot be represented as algorithmically-coded architectures.

Two main file formats coexist: the “deco 0” and “deco 2” formats. “deco”

stands for “decomposition-defined architecture”, followed by the format number.

The “deco 1” format is a compiled form of the “deco 0” format. We will describe

it here.

The “deco 1” file format results from an O(p2) preprocessing of the “deco

0” target architecture format. While the “deco 0” format contains a distance

matrix between all pairs of terminal domains, which is consequently in in Θ(p2/2),

the “deco 1” format contains the distance matrix between any pair of domains,

whether they are terminal or not. Since there are roughly 2p non-terminal domains

in a target architecture with p terminal domains, because all domains form a binary

tree whose leaves are the terminal domains, the distance matrix of a “deco 1”

format is in Θ(2p2), that is, four times that of the corresponding “deco 0” file.

Also, while the “deco 0” format lists only the characteristics of terminal do-

mains (in terms of weights and labels), the “deco 1” format provides these for all

domains, so as to speed-up the retrieval of the size, weight and label of any domain,

whether it is terminal or not.

The “deco 1” header is followed by two integer numbers, which are the number

of processors and the largest terminal number used in the decomposition, respec-

tively (just as for “deco 0” files). Two arrays follow.

9

The first array has as many lines as there are domains (and not only terminal

domains as in the case of “deco 0” files). Each of these lines holds three numbers:

the label of the terminal domain that is associated with this domain (which is the

label of the terminal domain of smallest number contained in this domain), the size

of the domain, and the weight of the domain. The first domain in the array is the

initial domain holding all the processors, that is, domain 1. The other domains in

the array are the resulting subdomains, in ascending domain number order, such

that the two subdomains of a given domain of number i are numbered 2i and 2i+1.

The second array is a lower triangular diagonal-less matrix that gives the dis-

tance between all pairs of domains.

For instance, Figure 1 and Figure 2 show the contents of the “deco 0” and

“deco 1” architecture decomposition files for UB(2, 3), the binary de Bruijn graph

of dimension 3, as computed by the amk grf program.

1

7

3

6

12 13 9 11 8 10

54

2

1415

deco 0

8 15

0 1 15

1 1 14

2 1 13

3 1 11

4 1 12

5 1 9

6 1 8

7 1 10

1

2 1

2 1 2

1 1 1 2

3 2 1 1 2

2 2 2 1 1 1

3 2 3 1 2 2 1

Figure 1: “deco 0” target decomposition file for UB(2, 3). The terminal numbers

associated with every processor define a unique recursive bipartitioning of the target

graph.

6 Adding a method to the libScotch library

The libScotch has been carefully designed so as to allow external contributors to

add their new partitioning or ordering methods, and to use Scotch as a testbed

for them.

6.1 What to add

There are currently six types of methods which can be added:

• k-way graph mapping methods, in module kgraph,

• graph bipartitioning methods by means of edge separators, in module bgraph,

used by the mapping method by dual recursive bipartitioning, implemented

in kgraph map rb.[ch],

• graph ordering methods, in module hgraph,

10

deco

1

8 15

0 8 8

3 4 4

0 4 4

5 2 2

3 2 2

2 2 2

0 2 2

6 1 1

5 1 1

7 1 1

3 1 1

4 1 1

2 1 1

1 1 1

0 1 1

2 2 2 2 1 2 2 1

3 1 2 2 1 2 2 2

3 1 2 2 1 2 1 2

1 1 2 2 3 2 3 1

2 2 3 1 3 2 3 2

1 3 3 1 2 2 1 2

1 1 2 2 1 1 1 2

2 1 2 2 1 1 1 2

2 2 3 3 2 2 3 1

2 2 1 3 2 1 2 2

1 2 2 1 1 2 2 2

1 1 1 3 3 2 3 3

2 1 2 3 3 2 1 2

1

Figure 2: “deco 1” target decomposition file for UB(2, 3), compiled with the acpl

tool from the “deco 0” file displayed in Figure 1.

• graph separation methods by means of vertex separators, in module vgraph,

used by the nested dissection ordering method implemented in hgraph

order nd.[ch],

• mesh ordering methods, in module hmesh,

• mesh separation methods with vertex separators, in module vmesh, used

by the nested dissection ordering method implemented in hmesh order

nd.[ch].

Every method of these six types operates on instances of augmented graph structures

that contain, in addition to the graph topology, data related to the current state

of the partition or of the ordering. For instance, all of the graph bipartitioning

methods operate on an instance of a Bgraph, defined in bgraph.h, and which

contains fields such as compload0, the current load sum of the vertices assigned

to the first part, commload, the load sum of the cut edges, etc.

In order to understand better the meaning of each of the fields used by some aug-

mented graph or mesh structure, contributors can read the code of the consistency

checking routines, located in files ending in check.c , such as bgraph check.c

for a Bgraph structure. These routines are regularly called during the execution of

the debug version of Scotch to ease bug tracking. They are time-consuming but

proved very helpful in the development and testing of new methods.

6.2 Where to add

Let us assume that you want to code a new graph separation routine. Your routine

will operate on a Vgraph structure, and thus will be stored in files called vgraph

separate xy.[ch], where xy is a two-letter reminder of the name of your al-

gorithm. Look into the libScotch source directory for already used codenames,

and pick a free one. In case you have more that one single source file, use extended

names, such as vgraph separate xy subname.[ch] .

11

In order to ease your coding, copy the files of a simple and already existing

method and use them as a pattern for the interface of your new method. Some

methods have an optional parameter data structure, others do not. Browse through

all existing methods to find the one that looks closest to what you want.

Some methods can be passed parameters at run time from the strategy string

parser. These parameters can be of fixed types only. These types are:

• an integer (int) type,

• an floating-point (double) type,

• an enumerated (char) type : this type is used to make a choice among a

list of single character values, such as “yn”. It is more readable than giving

integer numerical values to method option flags,

• a strategy (Scotch Strat type) : a method can be passed a sub-strategy of

a given type, which can be run on an augmented graph of the proper type.

For instance, the nested dissection method in hgraph order nd.c uses a

graph separation strategy to compute its vertex separators.

6.3 Declaring the new method to the parser

Once the new method has been coded, its interface must be known to the parser,

so that it can be used in strategy strings. All of this is done in the module strat-

egy method files, the name of which always end in st.[ch], that is, vgraph

separate st.[ch] for the vgraph module. Both files are to be updated.

In the header file * st.h, a new identifier must be created for the new method in

the StMethodType enumeration type, preferrably placed in alphabetical order.

In file * st.c, there are several places to update. First, in the beginning of the

module file, the header file of the new method, vgraph separate xy.h in this

example, must be added in alphabetical order to the list of included method header

files.

Then, if the new method has parameters, an instance of the method parameter

structure must be created, which will hold the default values for the method. This

is in fact a union structure, of the following form :

static union {

VgraphSeparateXyParam param;

StratNodeMethodData padding;

} vgraphseparatedefaultxy = { { ... } };

where the dots should be replaced by the list of default values of the fields of

the VgraphSeparateXyParam structure. Note that the size of the StratNode

MethodData structure, which is used as a generic padding structure, must always

be greater than or equal to the size of each of the parameter structures. If your

new parameter structure is larger, you will have to update the size of the Strat

NodeMethodData type in file parser.h . The size of the StratNodeMethod

Data type does not depend directly on the size of the parameter structures (as

could have been done by making it an union of all of them) so as to to reduce

the dependencies between the files of the library. In most cases, the default size is

sufficient, and a test is added in the beginning of all method routines to ensure it

is the case in practice.

Finally, the first two method tables must be filled accordingly. In the first one,

of type StratMethodTab, one must add a new line linking the method identifier

12

to the character code used to name the method in strategy strings (which must

be chosen among all of the yet unused letters), the pointer to the routine, and the

pointer to the above default parameter structure if it exists (else, a NULL pointer

must be given). In the second one, of type StratParamTab, one must add one

line per method parameter, giving the identifier of the method, the type of the

parameter, the name of the parameter in the strategy string, the base address

of the default parameter structure, the actual address of the field in the parameter

structure (both fields are required because the relative offset of the field with respect

to the starting address of the structure cannot be computed at compile-time), and

an optional pointer that references either the strategy table to be used to parse the

strategy parameter (for strategy parameters) or a string holding all of the values of

the character flags (for an enumerated type), this pointer being set to NULL for all

of the other parameter types (integer and floating point).

6.4 Adding the new method to the makefile

Of course, in order to be compiled, the new method must be added to the makefile

of the libscotch source directory. There are several places to update.

First, you have to create the entry for the new method source files themselves.

The best way to proceed is to search for the one of an already existing method, such

as vgraph separate fm, and copy it to the right neighboring place, preferrably

following the alphabetical order.

Then, you have to add the new header file to the dependency list of the module

strategy method, that is, vgraph separate st for graph separation methods.

Here again, search for the occurences of string vgraph separate fm to see where

it is done.

Finally, add the new object file to the component list of the libscotch library

file.

Once all of this is done, you can recompile Scotch and be able to use your new

method in strategy strings.

7 Data structure explanations

This section explains some of the data structures implemented in Scotch and

PT-Scotch.

7.1 Graph

Graphs are the fundamental underlying data structures of all the algorithms imple-

mented in Scotch. The Graph structure is the foundational data structure, from

which subclasses will be derived, according to the specific needs of the Scotch

modules. It is sometimes referred to as the source graph structure, with respect to

the target architecture Arch onto which source graphs are to be mapped.

The Graph structure, being a foundational data structure, does not possess

any variable fields related to actual computations, e.g., partition state variables or

an execution context. Such fields will be found in active graphs, e.g., Bgraph,

Kgraph, Vgraph.

A Graph is described by means of adjacency lists. These data are stored in

arrays and scalars of type SCOTCH Num, as shown in Figures 3 and 4. The Graph

fields have the following meaning:

13

baseval

Base value for all array indexing.

vertnbr

Number of vertices in graph.

edgenbr

Number of arcs in graph. Since edges are represented by both of their ends,

the number of edge data in the graph is twice the number of graph edges.

verttax

Based array of start indices in edgetax of vertex adjacency sub-arrays.

vendtax

Based array of after-last indices in edgetax of vertex adjacency sub-arrays.

For any vertex i, with baseval ≤ i < (vertnbr + baseval), (vendtax[i] −

verttax[i]) is the degree of vertex i, and the indices of the neighbors of i

are stored in edgetax from edgetax[verttax[i]] to edgetax[vendtax[i] − 1],

inclusive.

When all vertex adjacency lists are stored in order in edgetax, it is possible to

save memory by not allocating the physical memory for vendtax. In this case,

illustrated in Figure 3, verttax is of size vertnbr+ 1 and vendtax points to

verttax+ 1. This case is referred to as the “compact edge array” case, such

that verttax is sorted in ascending order, verttax[baseval] = baseval and

verttax[baseval+ vertnbr] = (baseval+ edgenbr).

velotax

Optional based array, of size vertnbr, holding the integer load associated with

every vertex.

edgetax

Based array, of a size equal at least to (maxi(vendtax[i])− baseval), holding

the adjacency array of every vertex.

edlotax

Optional based array, of a size equal at least to (maxi(vendtax[i])− baseval),

holding the integer load associated with every arc. Matching arcs should

always have identical loads.

Dynamic graphs can be handled elegantly by using the vendtax array. In order

to dynamically manage graphs, one just has to allocate verttax, vendtax and

edgetax arrays that are large enough to contain all of the expected new vertex and

edge data. Original vertices are labeled starting from baseval, leaving free space at

the end of the arrays. To remove some vertex i, one just has to replace verttax[i]

and vendtax[i] with the values of verttax[vertnbr−1] and vendtax[vertnbr−1],

respectively, and browse the adjacencies of all neighbors of former vertex vertnbr−1

such that all (vertnbr − 1) indices are turned into is. Then, vertnbr must be

decremented.

To add a new vertex, one has to fill verttax[vertnbr−1] and vendtax[vertnbr

−1] with the starting and end indices of the adjacency sub-array of the new vertex.

Then, the adjacencies of its neighbor vertices must also be updated to account for

it. If free space had been reserved at the end of each of the neighbors, one just has

to increment the vendtax[i] values of every neighbor i, and add the index of the new

vertex at the end of the adjacency sub-array. If the sub-array cannot be extended,

14

baseval

vertnbr

edgenbr

vlbltab

verttab

edgetab

edlotab

velotab

vendtab

24

4 10 13 16 19 22 25

4

4

4

4
4

1

2

2
2 1

1
3

3
3

1

1

1

2

4

1 2

3
4

56

1

7

1

2 6 3 4 1 7 6 5 1 2 4 2 7 3 7 2 6 2 1 5 5 2 43

1 1 1 12 2 2 3 3 1 2 2 12 2 1 3 3 3 1 3 1 2 1

4 1 4 4 4 4 4

7

Figure 3: Sample graph and its description using a compact edge array. Numbers

within vertices are vertex indices, bold numbers close to vertices are vertex loads,

and numbers close to edges are edge loads. Since the edge array is compact, verttax

is of size vertnbr+ 1 and vendtax points to verttax+ 1.

edgetab

verttab

vendtab

edlotab

17 2 13 10 232720

820 16 13 263023

3 4 1 7 6 5 2 7 3 1 2 4 2 63 7 2 6 5 2 4 2 1 5

12 2 2 3 3 12 2 1 2 2 1 1 1 1 3 3 1 2 1 3 1 3

Figure 4: Adjacency structure of the sample graph of Figure 3 with disjoint edge

and edge load arrays. Both verttax and vendtax are of size vertnbr. This allows

for the handling of dynamic graphs, the structure of which can evolve with time.

15

baseval

vertnbr

verttab

edgetab

vendtab

vnhdtab

edgenbr

vnohnbr

10 16 214 13 23

131518

22

19

1

7

1 2

3
4

5

45 1 3 2 33

1

2 5 4 1 2

4 8

5

6

4 25261 277 6

7

Figure 5: Sample halo graph and its description using a compact edge array. Num-

bers within vertices are vertex indices. Greyed values are indices of halo vertices.

Halo vertices have the highest indices in the graph, and are placed last in the adja-

cency sub-arrays of each non-halo vertex.

then it has to be copied elsewhere in the edge array, and both verttax[i] and

vendtax[i] must be updated accordingly. With simple housekeeping of free areas

of the edge array, dynamic arrays can be updated with as little data movement as

possible.

7.2 Hgraph

The Hgraph structure holds all the information necessary to represent and perform

computations on a halo graph. This term refers to graphs some vertices of which

are kept to preserve accurate topological information, but are usually not subject to

actual computations. These halo vertices are collectively referred to as the halo of

the graph. Halo graphs are notably used in sparse matrix reordering, where, in the

process of nested dissection, a graph is cut into three pieces: a vertex separator, and

two separated parts. Each of these parts must preserve the real degree information

attached to all their vertices, including those next to the separator. If halo graphs

were not used, the degrees of these vertices would appear smaller than what they

really are in the whole graph. Preserving accurate degree information is essential

for algorithms such as the minimum degree vertex ordering method. Some vertex

separation algorithms also aim at balancing halo vertices; in this case, separators will

be computed on halos, but this information will not be preserved once a separator

has been computed on the regular vertices.

Halo graphs exhibit specific structural and topological properties, illustrated

in Figure 5. In order to distinguish easily halo vertices from regular vertices and

write efficient algorithms, halo vertices have the highest vertex indices in the graph.

Because the degrees of halo vertices need not be preserved, no edges connect two

halo vertices; the adjacency of halo vertices is only made of regular vertices. Also, in

the adjacency arrays of regular vertices, all non-halo vertices are placed before halo

vertices. All these properties allow one to easily induce the non-halo graph from

some halo graph, without having to create new adjacency arrays. An additional

vertex index array is present just for this purpose.

Halo graph fields have the following meaning:

16

s Underlying source graph that contains all regular and halo vertices. This

is where to search for fields such as baseval, vertnbr, vertnnd, verttax,

vendtax, etc.

vnohnbr

Number of non-halo vertices in graph. Hence, 0 ≤ vnohnbr ≤ s.vertnbr.

vnhdtax

Array of after-last indices in s.edgetax of non-halo vertex adjacency sub-

arrays. Since this information only concerns non-halo vertices, vnhdtax is of

size vnohnbr, not vertnbr. For any non-halo vertex i, with baseval ≤ i <

(vnohnbr+ baseval), the indices of the non-halo neighbors of i are stored in

s.edgetax from s.edgetax[s.verttax[i]] to s.edgetax[vnhdtax[i] − 1],

inclusive, and its halo neighbors are stored from s.edgetax[vnhdtax[i]] to

s.edgetax[s.vendtax[i]− 1], inclusive.

vnlosum

Sum of non-halo vertex loads. Hence, 0 ≤ vnlosum ≤ s.velosum.

enohnbr

Number of non-halo arcs in graph. Hence, 0 ≤ enohnbr ≤ s.edgenbr.

7.3 Kgraph

The Kgraph structure holds all the information necessary to compute a k-way

(re)mapping of some graph onto a target architecture. Consequently, it contains a

Graph, defined as field s, and a reference to an Arch, through the field m.archptr,

as well as two Mapping structures: one for the current mapping to compute, and

one to store the old mapping from which to remap. Additional information comprise

data to model the cost of remapping, and data associated with the state and cost

of the current mapping: list of frontier vertices, load of each partition domain, plus

the execution context for multi-threading execution.

The Graph structure is internal to the Kgraph because every new Kgraph

contains a different graph topology (e.g., a band graph or a coarsened graph). The

Arch is accessed by reference because it is constant data which can be shared by

many Kgraphs. For the sake of consistency, the grafptr fields of each mapping

m and r.m must point to &s, while their two archptr fields must point to the

same target architecture. This redundency is the price to pay for lighter memory

management.

7.3.1 Mappings

The domnorg field, which must contain a valid domain in the architecture

m.archptr, is the starting point for the k-way mapping. This domain may be

smaller than the full architecture when parallel partitioning is performed: in this

case, each process may receive a separate subgraph and sub-architecture to work

on.

Each of the two mappings has its own specificities. The current mapping, defined

as field m, is never incomplete: all the cells of its m.parttax array are non-negative

values that index a valid domain in the domain array m.domntab. These do-

mains are all subdomains of the architecture referenced through field m.archptr.

More restrictively, the domains attached to non-fixed vertices must be included in

domnorg, which may be smaller.

17

The current mapping evolves with time, according to the various algorithms that

the user can activate in the strategy string. These algorithms will create derived

Kgraphs (e.g., band graphs or coarsened graphs), to which mapping methods will

be applied, before the result is ported back to their parent Kgraph. Depending

on the kind of the derived graph, the m.parttax array may be specific, but the

m.domntab array will always be ported back as is. Consequently, in order to save

memory copying, the policy which is implemented is that the derived Kgraph gets

the pointer to the m.domntab of its parent, while the latter is set to NULL. The

derived graph can therefore reallocate the array whenever needed, without the risk

of an old, invalid, pointer being kept elsewhere. Then, when the processing of the

derived Kgraph ends, the most recent pointer is copied back to the m.domntab

field of the parent graph, and the m.parttax array is updated accordingly, after

which the derived Kgraph can be destroyed without freeing the pointer.

The old mapping, defined as field r.m, may contain incomplete mapping infor-

mation: some of the cells of its r.m.parttax array may be equal to -1, to indicate

that no prior mapping information is available (e.g., when the vertex did not exist

in the previous mapping). Since old mappings do not change, the r.m.domntab

field can be shared among all derived Kgraphs. It is protected from double memory

freeing by not setting the MAPPINGFREEDOMN flag in field r.m.flagval.

7.4 Mapping

The Mapping structure defines how individual vertices of a Graph are mapped

individually onto (parts of) an Arch. A mapping is said complete if all source

graph vertices are assigned to terminal target domains, i.e., individual vertices of

the target architecture, or partial if at least one of the source graph vertices is

assigned to a target domain that comprises more than one vertex. In the course

of the graph mapping process, the destination of source vertices are progressively

refined, from an initial target domain that usually describes the whole of the target

architecture, to terminal domains.

Since ArchDom, the data structure that describes target architecture domains,

is big and costly to handle (e.g., to compare if two ArchDoms are identical), the

handling of domains in mapping is indirect: in the part array parttax, each vertex

is assigned an integer domain index that refers to a domain located in the domain

array domntab. Hence, when two graph vertices have the same index in parttax,

they belong to the same domain and induce no communication cost. However, the

opposite is false: two vertices may have a different index in parttax and yet belong

to the same target domain. This is for instance the case when one of the vertices is

a fixed vertex that has been set to a specific terminal domain at initialization time,

and one of its neighbors is successively mapped to smaller and smaller subdomains

that eventually amount to the same terminal domain.

In the case of a remapping, the mapping information regarding the former place-

ment of the vertices may be incomplete, e.g., because the vertex did not exist be-

fore. Such a mapping is said to be incomplete. It is characterized by the fact

that some cells of the parttax array are equal to -1, to indicate an unknown

terminal domain number. To allow for this, the mapping must have the MAPPING

INCOMPLETE flag set. Incomplete mappings are only valid when holding remapping

information; new mappings being computed must have all their parttax cells set

with non-negative values that point to valid domains in the domntab array. New

mappings can therefore only be partial or complete.

When a mapping is initialized, all parttax values for non-fixed vertices

18

are set to index 0, and domntab[0] is set to the root domain for the map-

ping. In the general case for centralized mapping, the initial domain is equal

to archDomFrst(archptr). However, when a centralized mapping process is

launched as a part of a distributed mapping process, the initial domain may be a

subset of the whole target architecture.

There is no obligation for the domntab array to contain only one instance of

some target domain. On the contrary, as described above, the same domain may ap-

pear at least twice: once for fixed vertices, and once for non-fixed vertices on which

mapping algorithms are applied. However, for efficiency reasons (e.g., avoiding to

compute vertex distances that are equal to zero), it is preferable that duplicate do-

mains are avoided in the domntab array. This is the case by nature with recursive

bipartitioning, as the domains associated with branches of the biparitioning tree

are all distinct.

Making the distinction between fixed and non-fixed vertices, which is relevant

to mapping algorithms, is not in the scope of the Mapping data structure, which

only represents a global state. This is why no data related to fixed vertices is

explicitly present in the mapping itself (it may be found, e.g., in the Kgraph data

structure). However, for handling fixed vertices in an efficient way, the semantics

of the Mapping data structure is that all domains that are associated with fixed

vertices must be placed first in the domntab array. The purpose of this separation

is because, when the imbalance of a mapping is computed, the loads of non-fixed

vertices that belong to some (partial) domain and of fixed vertices that belong

to domains that are subdomains of this domain have to be aggregated. This

aggregation procedure is made easier if both types of domains are kept separate.

For efficiency reasons, fixed domains should appear only once in the fixed part of

domntab.

The Mapping structure is mainly used within the Kgraph structure, which

contains two instances of it: one for the current mapping to be computed, and one

for the old mapping, in the case of remapping. The building of a Kgraph from

another one (e.g., when creating a band graph or a coarsened graph) may lead to

situations in which some Mapping arrays may be re-used, and thus should not

be freed when the derived Mapping is freed. This is why the Mapping structure

contains flags to record whether its arrays should be freed or not. These flags are

the following:

• MAPPINGFREEDOMN: set if the domain array has to be freed when the mapping

is freed. A common case for sharing the domain array is when a coarser

Kgraph is computed: the domain array of the coarse old mapping can re-use

that of the fine old mapping.

• MAPPINGFREEPART: set if the part array has to be freed when the mapping

is freed. A common case for sharing the part array is when the user part array

is kept as the part array for the initial Kgraph current mapping structure.

The main fields of the Mapping data structure are the following:

• flagval: set of flags that defines whether the parttax and domntab have

to be freed on exit.

• grafptr: pointer to the Graph associated with the mapping, that gives ac-

cess to the base value grafptr->baseval and the number of source vertices

grafptr->vertnbr.

19

• archptr: pointer to the Arch associated with the mapping, that is necessary

to perform all distance computations on the mapping.

• parttax: based array of Anums, of size grafptr->vertnbr, that provides

the index of the target domains onto which all graph vertices are currently

mapped. Indices are un-based.

• domntab: un-based array of ArchDoms, of size domnmax, that stores the tar-

get domains to which source graph vertices are indirectly associated through

the parttax array.

• domnnbr: number of target domain slots currently used in domntab. After

a mapping is initialized, 1 ≤ domnnbr < domnmax, because source graph

vertices must be associated to some domain, hence domntab should at least

contain one domain.

• domnnbr: number of target domain slots currently used in domntab.

• domnmax: size of the domntab array.

• mutedat: when multi-threading is activated, allows to create critical sections

to update the mapping data in a thread-safe manner.

8 Code explanations

This section explains some of the most complex algorithms implemented in Scotch

and PT-Scotch.

8.1 dgraphCoarsenBuild()

The dgraphCoarsenBuild() routine creates a coarse distributed graph from a

fine distributed graph, using the result of a distributed matching. The result of the

matching is available on all MPI processes as follows:

• coardat.multlocnbr: the number of local coarse vertices to be created;

• coardat.multloctab: the local multinode array. For each local coarse

vertex to be created, it contains two values. The first one is always positive,

and represents the global number of the first local fine vertex to be mated.

The second number can be either positive or negative. If it is positive, it

represents the global number of the second local fine vertex to be mated. If it

is negative, its opposite, minus two, represents the local edge number pointing

to the remote vertex to be mated; coardat.procgsttax: array (restricted

to ghost vertices only) that records on which process is located each ghost fine

vertex.

8.1.1 Creating the fine-to-coarse vertex array

In order to build the coarse graph, one should create the array that provides the

coarse global vertex number for all fine vertex ends (local and ghost). This infor-

mation will be stored in the coardat.coargsttax array.

Hence, a loop on local multinode data fills coardat.coargsttax. The first

local multinode vertex index is always local, by nature of the matching algorithm.

If the second vertex is local too, coardat.coargsttax is filled instantly. Else,

20

a request for the global coarse vertex number of the remote vertex is forged, in

the vsnddattab array, indexed by the current index coarsndidx extracted from

the neighbor process send index table nsndidxtab. Each request comprises two

numbers: the global fine number of the remote vertex for which the coarse number

is seeked, and the global number of the coarse multinode vertex into which it will

be merged.

Then, an all-to-all-v data exchange by communication takes place, using either

the dgraphCoarsenBuildPtop() or dgraphCoarsenBuildColl() routines.

Apart from the type of communication they implement (either point-to-point or

collective), these routines do the same task: they process the pairs of values sent

from the vsnddattab array. For each pair (the order of processing is irrelevant),

the coargsttax array of the receiving process is filled-in with the global multinode

value of the remotely mated vertex. Hence, at the end of this phase, all processes

have a fully valid local part of the coargsttax array; no value should remain

negative (as set by default). Also, the nrcvidxtab array is filled, for each neighbor

process, of the number of data it has sent. This number is preserved, as it will serve

to determine the number of adjacency data to be sent back to each neighbor process.

Then, data arrays for sending edge adjacency are filled-in. The ercvdsptab

and ercvcnttab arrays, of size procglbnbr, are computed according to the

data stored in coardat.dcntglbtab, regarding the number of vertex- and edge-

related data to exchange.

By way of a call to dgraphHaloSync(), the ghost data of the coargsttax

array are exchanged.

Then, edgelocnbr, an upper bound on the number of local edges, as well as

ercvdatsiz and esnddatsiz, the edge receive and send array sizes, respectively.

Then, all data arrays for the coarse graph are allocated, plus the main adjacency

send array esnddsptab, its receive counterpart ercvdattab, and the index send

arrays esnddsptab and esndcnttab, among others.

Then, adjacency send arrays are filled-in. This is done by performing a loop on

all processes, within which only neighbor processes are actually considered, while

index data in esnddsptab and esndcnttab is set to 0 for non-neighbor processes.

For each neighbor process, and for each vertex local which was remotely mated by

this neighbor process, the vertex degree is written in the esnddsptab array, plus

optionally its load, plus the edge data for each of its neighbor vertices: the coarse

number of its end, obtained through the coargsttax array, plus optionally the

edge load. At this stage, two edges linking to the same coarse multinode will not be

merged together, because this would have required a hash table on the send side.

The actual merging will be performed once, on the receive side, in the next stage

of the algorithm.

8.2 dgraphFold() and dgraphFoldDup()

The dgraphFold() routine creates a “folded” distributed graph from the input

distributed graph. The folded graph is such that it spans across only one half of the

processing elements of the initial graph (either the first half, or the second half).

The purpose of this folding operation is to preserve a minimum average number of

vertices per processing element, so that communication cost is not dominated by

message start-up time. In case of an odd number of input processing elements, the

first half of them is always bigger that the second.

The dgraphFoldDup() routine creates two folded graphs: one for each half.

Hence, each processing element hosting the initial graph will always participate in

21

hosting a new graph, which will depend on the rank of the processing element.

When the MPI implementation supports multi-threading, and multi-threading is

activated in Scotch, both folded graphs are created concurrently.

The folding routines are based on the computation of a set of (supposedly effi-

cient) point-to-point communications between the sender processes, which will not

retain any graph data, and the receiver processes, which will host the folded graph.

However, in case of unbalanced vertex distributions, overloaded receiver processes

(called sender receiver processes) may also have to send their extra vertices to

underloaded receiver processes. A receiver process may receive several chunks of

vertex data (including their adjacency) from several sender processes. Hence, fold-

ing amounts to a redistribution of vertex indices across all receiver processes. In

particular, end vertex indices have to be renumbered according to the global order

in which the chunks of data are exchanged. This is why the computation of these ex-

changes, by way of the dgraphFoldComm() routine, has to be fully deterministic

and reproducible across all processing elements, to yield consistent communication

data. The result of this computation is a list of point-to-point communications

(either all sends or receives) to be performed by the calling process, and an array

of sorted global vertex indices, associated with vertex index adjustment values, to

convert global vertex indices in the adjacency of the initial graph into global vertex

indices in the adjacency of the folded graph. This array can be used, by way of

dichotomy search, to find the proper adjustment value for any end vertex number.

To date, the dgraphRedist() routine is not based on a set of point-to-point

communications, but collectives. It could well be redesigned to re-use the mecha-

nisms implemented here, with relevant code factorization.

8.2.1 dgraphFoldComm()

The dgraphFoldComm() routine is at the heart of the folding operation. It com-

putes the sets of point-to-point communications required to move vertices from the

sending half of processing elements to the receiving half, trying to balance the folded

graph as much as possible in terms of number of vertices. For receiver processes, it

also computes the data needed for the renumbering of the adjacency arrays of the

graph chunks received from sender (or sender receiver) processes.

It is to be noted that the end user and the Scotch algorithms may have diver-

gent objectives regarding balancing: in the case of a weighted graph representing

a computation, where some vertices bear a higher load than others, the user may

want to balance the load of its computations, even if it results in some processing

elements having less vertices than others, provided the sums of the loads of these

vertices are balanced across processing elements. On the opposite, the algorithms

implemented in Scotch operate on the vertices themselves, irrespective of the load

values that is attached to them (save for taking them into account for computing

balanced partitions). Hence, what matters to Scotch is that the number of ver-

tices is balanced across processing elements. Whenever Scotch is provided with

an unbalanced graph, it will try to rebalance it in subsequent computations (e.g.,

folding). However, the bulk of the work, on the initial graph, will be unbalanced

according to the user’s distribution.

During a folding onto one half of the processing elements, the processing elements

of the other half will be pure senders, that need to dispose of all of their vertices

and adjacency. Processing elements of the first half will likely be receivers, that

will take care of the vertices sent to them by processing elements of the other half.

However, when a processing element in the first half is overloaded, it may behave

22

as a sender rather than a receiver, to dispose of its extra vertices and send it to an

underloaded peer.

The essential data that is produced by the dgraphFoldComm() routine for the

calling processing element is the following:

• commmax: the maximum number of point-to-point communications that can

be performed by any processing element. The higher this value, the higher

the probability to spread the load of a highly overloaded processing element

to (underloaded) receivers. In the extreme case where all the vertices are

located on a single processing element, (procglbnbr − 1) communications

would be necessary. To prevent such a situation, the number of communi-

cations is bounded by a small number, and receiver processing elements can

be overloaded by an incoming communication. The algorithm strives to pro-

vide a feasible communication scheme, where the current maximum number of

communications per processing element suffices to send the load of all sender

processing elements. When the number of receivers is smaller than the num-

ber of senders (in practice, only by one, in case of folding from an odd number

of processing elements), at least two communications have to take place on

some receiver, to absorb the vertices sent. The initial maximum number of

communications is defined by DGRAPHFOLDCOMMNBR;

• commtypval: the type of communication and processing that the process-

ing element will have to perform: either as a sender, a receiver, or a sender

receiver. Sender receivers will keep some of their vertex data, but have to

send the rest to other receivers. Sender receivers do send operations only, and

never receive data from a sender;

• commdattab: a set of slots, of type DgraphFoldCommData, that describe

the point-to-point communications that the processing element will initiate

on its side. Each slot contains the number of vertices to send or receive, and

the target or source process index, respectively;

• commvrttab: a set of values associated to each slot in commdattab, each of

which contains the global index number of the first vertex of the graph chunk

that will be transmitted;

• proccnttab: for receiver processes only, the count array of same name of

the folded distributed graph structure;

• vertadjnbr: for receiver processes only, the number of elements in the

dichotomy array vertadjtab;

• vertadjtab: a sorted array of global vertex indices. Each value represent

the global start index of a graph chunk that will been exchanged (or which

will remain in place on a receiver processing element);

• vertdlttab: the value which has to be added to the indices of the vertices

in the corresponding chunk represented in vertadjtab. This array and the

latter serve to find, by dichotomy, to which chunk an end vertex belongs, and

modify its global vertex index in the edge array in the receiver processing

element. Although vertadjtab and vertdlttab contain strongly related

information, they are separate arrays, for the sake of memory locality. Indeed,

vertadjtab will be subject to a dichotomy search, involving many memory

reads, before the proper index is found and a single value is retrieved from

the vertdlttab array.

23

The first stage of the algorithm consists in sorting a global process load array in

ascending order, in two parts: the sending half, and the receiving half. These two

sorted arrays will contain the source information which the redistribution algorithm

will use. Because the receiver part of the sort array can be modified by the algo-

rithm, it is recomputed whenever commmax is incremented. It is the same for sort

sndbas, the index of the first non-empty sender in the sort array.

In a second stage, the algorithm will try to compute a valid communication

scheme for vertex redistribution, using as many as commmax communications (ei-

ther sends or receives) per processing element. During this outermost loop, if a

valid communication scheme cannot be created, then commmax is incremented and

the communication scheme creation algorithm is restarted. The initial value for

commmax is DGRAPHFOLDCOMMNBR.

The construction of a valid communication scheme is performed within an in-

termediate loop. At each step, a candidate sender process is searched for: either a

sender process which has to dispose of all of its vertices, or an overloaded receiver

process, depending on which has the biggest number of vertices to send. If can-

didate senders can no longer be found, the stage has succeeded with the current

value of commmax; if a candidate sender has been found but a candidate receiver

has not, the outermost loop is restarted with an incremented commmax value, so as

to balance loads better.

Every time a sender has been found and one or more candidate receivers exist,

an inner loop creates as many point-to-point communications as to spread the

vertices in chunks, across one or more available receivers, depending on their

capacity (i.e., the number of vertices they can accept). If the selected sender

is a sender receiver, the inner loop will try to interleave small communications

from pure senders with communications of vertex chunks from the selected sender

receiver. The purpose of this interleaving is to reduce the number of messages

per process: a big message from a sender receiver is likely to span across several

receivers, which will then perform only a single receive communication. By

interleaving a small communication on each of the receivers involved, the latter

will only have to perform one more communication (i.e., two communications

only), and the interleaved small senders will be removed off the list, reducing the

probability that afterwards many small messages will sent to the same (possibly

eventually underloaded) receiver.

In a third stage, all the data related to chunk exchange, which was recorded in

a temporary form in the vertadjtab, vertdlttab and slotsndtab arrays,

is compacted to remove empty slots and to form the final vertadjtab and

vertdlttab arrays to be used for dichotomy search.

The data structures that are used during the computation of vertex global index

update arrays are the following:

• vertadjtab and vertdlttab: these two arrays have been presented above.

They are created only for receiver processes, and will be filled concurrently.

They are of size ((commmax + 1) ∗ orgprocnbr), because in case a process

is a sender receiver, it has to use a first slot to record the vertices it will

keep locally, plus commmax for outbound communications. During the second

stage of the algorithm, for some slot i, vertadjtab[i] holds the start

global index of the chunk of vertices that will be kept, sent or received, and

vertdlttab[i] holds the number of vertices that will be sent or received.

24

During the third stage of the algorithm, all this data will be compacted,

to remove empty slots. After this, vertadjtab will be an array of global

indices used for dichotomy search in dgraphFold(), and vertdlttab[i]

will hold the adjustment value to apply to vertices whose global indices are

comprised between vertadjtab[i] and vertadjtab[i+1].

• slotsndtab: this array only has cells for receiver-slide slots, hence a

size of ((commmax + 1) ∗ procfldnbr) items. During the second stage

of the algorithm, it is filled so that, for any non-empty communication

slot i in vertadjtab and vertdlttab, representing a receive operation,

slotsndtab[i] is the slot index of the corresponding send operation. Dur-

ing the third stage of the algorithm, it is used to compute the accumulated

vertex indices across processes.

Here are some examples of redistributions that are computed by the dgraph

FoldComm() routine.

1 orgvertcnttab = { 20, 20, 20, 20, 20, 20, 20, 1908 }

2 partval = 1

3 vertglbmax = 1908

4 Proc [0] (SND) 20 -> 0 : { [4] <- 20 }

5 Proc [1] (SND) 20 -> 0 : { [5] <- 20 }

6 Proc [2] (SND) 20 -> 0 : { [6] <- 20 }

7 Proc [3] (SND) 20 -> 0 : { [6] <- 20 }

8 Proc [4] (RCV) 20 -> 512 : { [0] -> 20 }, { [7] -> 472 }

9 Proc [5] (RCV) 20 -> 512 : { [1] -> 20 }, { [7] -> 472 }

10 Proc [6] (RCV) 20 -> 512 : { [2] -> 20 }, { [7] -> 452 }, { [3] -> 20 }

11 Proc [7] (RSD) 1908 -> 512 : { [4] <- 472 }, { [5] <- 472 }, { [6] <- 452 }

12 commmax = 4

13 commsum = 14

We can see in the listing above that some interleaving took place on the first receiver

(proc. 4) before the sender receiver (proc. 7) did its first communication towards it.

1 orgvertcnttab = { 0, 0, 0, 20, 40, 40, 40, 100 }

2 partval = 1

3 vertglbmax = 100

4 Proc [0] (SND) 0 -> 0 :

5 Proc [1] (SND) 0 -> 0 :

6 Proc [2] (SND) 0 -> 0 :

7 Proc [3] (SND) 20 -> 0 : { [4] <- 20 }

8 Proc [4] (RCV) 40 -> 60 : { [3] -> 20 }

9 Proc [5] (RCV) 40 -> 60 : { [7] -> 20 }

10 Proc [6] (RCV) 40 -> 60 : { [7] -> 20 }

11 Proc [7] (RSD) 100 -> 60 : { [5] <- 20 }, { [6] <- 20 }

12 commmax = 4

13 commsum = 6

In the latter case, one can see that the pure sender that has been interleaved (proc. 3)

sufficed to fill-in the first receiver (proc. 4), so the first communication of the sender

receiver (proc. 7) was towards the next receiver (proc. 5).

25

	Introduction
	Coding style
	Typing
	Spacing
	Aligning
	Idiomatic specificities

	Indenting
	Comments

	Naming conventions
	File inclusion markers
	Variables and fields
	Functions
	Array index basing

	Structure of the libScotch library
	Files and data structures
	Decomposition-defined architecture files

	Adding a method to the libScotch library
	What to add
	Where to add
	Declaring the new method to the parser
	Adding the new method to the makefile

	Data structure explanations
	Graph
	Hgraph
	Kgraph
	Mappings

	Mapping

	Code explanations
	dgraphCoarsenBuild()
	Creating the fine-to-coarse vertex array

	dgraphFold() and dgraphFoldDup()
	dgraphFoldComm()

